Introduction

The addition and subtraction formulas for sine and cosine are powerful tools in trigonometry. These formulas allow us to find the sine and cosine of the sum or difference of two angles.

Formulas

Worked-out Examples

Example 1: \( \sin\left(\frac{\pi}{12}\right) \)

Using the sine subtraction formula, we get:

$$ \sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{4} – \frac{\pi}{6}\right) $$

$$ = \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) – \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right) $$

$$ = \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} – \frac{\sqrt{2}}{2} \times \frac{1}{2} $$

$$ = \frac{\sqrt{6} – \sqrt{2}}{4} $$

Example 2: \( \cos\left(\frac{\pi}{12}\right) \)

Using the cosine subtraction formula, we get:

$$ \cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{4} – \frac{\pi}{6}\right) $$

$$ = \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right) $$

$$ = \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} $$

$$ = \frac{\sqrt{6} + \sqrt{2}}{4} $$

Example 3: \( \tan\left(\frac{\pi}{12}\right) \)

Using the sine and cosine formulas, we get:

$$ \tan\left(\frac{\pi}{12}\right) = \frac{\sin\left(\frac{\pi}{12}\right)}{\cos\left(\frac{\pi}{12}\right)} $$

$$ = \frac{\frac{\sqrt{6} – \sqrt{2}}{4}}{\frac{\sqrt{6} + \sqrt{2}}{4}} $$

$$ = \frac{\sqrt{6} – \sqrt{2}}{\sqrt{6} + \sqrt{2}} $$

$$ = \frac{\sqrt{6} – \sqrt{2}}{\sqrt{6} + \sqrt{2}} \times \frac{\sqrt{6} – \sqrt{2}}{\sqrt{6} – \sqrt{2}} $$

$$ = \frac{(\sqrt{6} – \sqrt{2})^2}{(\sqrt{6})^2 – (\sqrt{2})^2} $$

$$ = \frac{6 – 2\sqrt{12} + 2}{4} $$

$$ = \frac{8 – 2\sqrt{12}}{4} $$

$$ = \frac{2(4 – \sqrt{12})}{4} $$

$$ = \frac{4 – \sqrt{12}}{2} $$

Practice Problems

Use the addition and subtraction formulas to find the following:

  1. $$ \sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right) $$
  2. $$ \cos\left(\frac{\pi}{3} – \frac{\pi}{4}\right) $$

Leave a Reply